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We study the decay of the particle number in the one-species reactions A+A — 0 and A+ A4 — A,
when the particles undergo anomalous diffusion. This transport mechanism is modeled by means
of Lévy flights in the frame of an analytical formulation, which provides an explicit expression of a
time-dependent reaction rate, to be incorporated into the chemical-kinetics equation. We find that
Lévy flights modify the power-law decay that is observed for ordinary diffusion. Under appropriate
circumstances, this form of anomalous enhanced diffusion is unable to control reactions, and the

particle system behaves as described by ordinary chemical kinetics.

Detailed comparisons with

numerical simulations make apparent the usefulness of our analytical treatment.

PACS number(s): 05.40.+j, 82.20.—w

I. INTRODUCTION

The interplay of reaction and transport processes in
natural systems is presently attracting much attention
[1]. This is due to a twofold reason. On one side, many
systems of practical interest are driven by the combined
effect of those processes [2]. On the other, such inter-
play is a paradigm of complex behavior, related, for in-
stance, to self-organization and anomalous chemical ki-
netics. This phenomenon has become essential in our
comprehension of macroscopic systems in physics and
chemistry, as well as in biology [3] and social sciences
(4]

Previous work on the interplay of reaction and trans-
port processes has been practically restricted to the con-
sideration of diffusive transport. Reaction-diffusion mod-
els have been extensively used to study pattern formation
[5]. It has also been shown that diffusion is able to modify
in a nontrivial manner the kinetics of some elementary
reaction processes. For instance, in one-species binary
annihilation (A + A — 0) and coagulation (A + A — A)
on a d-dimensional substrate, the asymptotic long-time
decay of the particle number in the presence of diffusion
is [6]

t742 d<2
v~ {1 45 M

For d < 2 this contrasts with the ordinary chemical-
kinetics result, N(t) ~ ¢t~1.

Although diffusion plays a fundamental role as a trans-
port mechanism in a vast class of natural processes,
many real systems are driven by other forms of transport.
Therefore, one is naturally led to consider, for instance,
convection [7] or anomalous diffusion. In connection with
its interplay with reaction events, this latter mechanism
has received attention only recently [8,9].

As a transport process, anomalous diffusion underlies
many important physical systems [10]. Diffusion in tur-
bulent flows [11], phase-space motion in chaotic dynamics
[12], and transport in highly hetereogeneous media, such
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as porous materials or gels [10,13], are the main instances
of those systems. In contrast to ordinary diffusion, where
the mean square displacement is proportional to the time
(r?) o t, anomalous diffusion can be characterized by a
wide class of alternative behaviors. They range from gen-
eralized diffusion laws, (r2) oc t? (3 # 1), to situations in
which (r2) is not defined. These anomalies produce un-
usual topological features in the transport mechanism,
such as fractal structure [11,14].

The effect of anomalous diffusion in the kinetics of the
one-species reactions A+ A —0and A+ A — A and on
two-species annihilation A+B — 0 has recently been con-
sidered in the frame of Lévy flight models [8,9]. In these
models, anomalous diffusion is represented by a random
walk with a long-tailed jump probability, p(r) ~ r=1=7
[15]. Numerically, it has been found that the particle
number in a one-dimensional system undergoing the one-
species reactions decays for long times as N(t) ~ t~1/7
for 1 < v < 2 [cf. Eq. (1)]. This result can be justified
in a semiquantitative manner by studying the distribu-
tion of interparticle distances [8] or by means of scaling
analyses.

In this paper, we aim at presenting a more consis-
tent approach for describing the reaction kinetics of one-
species annihilation and coagulation under anomalous
diffusion. As advanced in [9], we exploit here an ap-
proximated analytical formulation that has successfully
explained the anomalies of those reactions between par-
ticles that perform ordinary diffusion in the critical di-
mension d = 2 [16]. In the next section, for the read-
ers’ reference, we outline the main steps of the analytical
treatment. In Sect. III, the formulation is applied to
our problem and some asymptotic results are explicitly
obtained. Section IV is devoted to a comparison of the
analytical results with numerical simulations.

II. ANALYTICAL APPROACH

Our method [16] applies in the frame of the continuous-
time random-walk theory on the lattice. In this theory,
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a random walk is characterized by a waiting-time den-
sity 9(t) and a jump probability p(r). The waiting-time
density stands for the probability distribution of the time
that the walker stays at a lattice site before hopping to
another site. Meanwhile, p(r) is the probability that the
walker jumps a directed distance r. Successive jumps are
supposed to be independent, whereas (t) and p(r) are
uncorrelated. Particularly relevant to our formulation
are the Laplace transform of the waiting-time density,
¥(u), and the Fourier transform of the jump probability,
w(k), namely, the structure function of the random walk.

As suggested in Ref. [17], the annihilation (A+ A — 0,
€ = 2) and the coagulation (A + A — A, € = 1) prob-
lems can be mapped into another one in which the par-
ticle number is preserved. The particles that, due to re-
actions, disappear in the original problems are replaced
by “ghost” particles. Reactions are then identified with
identity changes from A to “ghost” particles. The evo-
lution of the number of A particles N(t) can then be
factored as

W = —eF (AW , (2)

where F'(t) is the probability that any two particles in the
system meet for the first time, and A(¢) is the probability
that such an encounter occurs between particles of (the
“nonghost”) species A.

In terms of the first-encounter probability of the ith
and the jth particles, F(r; — rj,t), F(t) reads

F(t)=%ZZF2(ri_rj7t)’ (3)

i j#i

where ry, is the initial position of particle k. Meanwhile,
an approximated expression for A(t) is given by

A(t) = [%} 2, (4)

which corresponds to neglecting concentration fluctua-
tions. Since these fluctuations do play a role in the kinet-
ics of the reaction, their effect should then be described
by F(t). Calling n(t) = N(t)/N(0), Eq. (2) can be recast
as
dn
dt

with x(t) = eF(t)/N(0). Note that this equation has
the form of an ordinary chemical-kinetics rate equation
with a time-dependent reaction rate x(t), to be calculated
from the first-encounter probability Fs.

When the waiting-time density is exponential with
mean waiting time (t) = 1/},

¥(t) = Aexp(—-At), (6)

the relative motion of two particles is identical to a sin-
gle random walk with the same waiting-time distribution,
except that the mean waiting time is halved, A — 2. In
the Laplace-transformed distribution this corresponds to
change u — wu/2. Therefore, F5(r,t) can be calculated

= —k(t)n?, (5)

from the probability that a single particle starting its
random walk at the origin reaches site r at time £. This
latter quantity can in turn be evaluated from R(r,t), the
probability that the same particle reaches r not necessar-
ily for the first time [18]. In the Laplace representation,
we have

R(r,u/2)

Fy(r,u) = ————R(O,u/2)’ (7)

for r # 0. On a d-dimensional lattice, R(r,u) is given by

1 [m " 4 cos Trmkm
R(r,u) = A dky - -- /0 dkg Hi":l > (u§w o ), )

with r = (rq,...,74), k = (k1,...,kq) and, according to
Ea. (6), %(u) = (1 +u/X)™.

Introducing Cp, the initial concentration of A particles,
makes it possible to extend the summations in Eq. (3)
over the whole lattice. Note that this requires one to
suppose the initial particle distribution to be homoge-
neous, so that Cp is a well defined quantity. Taking into
account Eq. (7), we can calculate the Laplace transform

- of the time-dependent reaction rate as

ECo 1
wlu) = =5~ [[1 — $(u/2]R(0,4/2) ~ 1] 9

In general, the Laplace antitransformation of this equa-
tion cannot be explicitly performed, and it will be neces-
sary to resort to approximation techniques or to numer-
ical algorithms. In any case, once x(t) has been found,
the reduced particle number n(t), solution to Eq. (5),
can be calculated from

n(t) = [1 + /0 t dt’n(t’)]

= {1+ £ [s(u)/u]} 7,
(10)

where £7![] indicates Laplace antitransform.

In order to evaluate the reaction rate x, our analytical
approach reduces to the calculation of R(0,u/2), which
according to Egs. (8) and (6) reads

R(0,u/2) = i[) dkl---/o dkg

nd

x [1— (1+u/22) w(k)] . (11)

The possibility of performing these integrals depends
strongly on the function w(k). We recall that this is
the structure function of the random walk, and there-
fore defines the geometrical properties of this transport
mechanism. In the following sections we apply this ana-
lytical apparatus to the case of a random walk represent-
ing anomalous diffusion.

III. ANOMALOUS DIFFUSION IN ONE
DIMENSION

In the framework of random walks, anomalous diffu-
sion can be described by means of a jump probability
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given by a Lévy distribution [13-15]. Lévy distributions
are defined through their Fourier transform as

w(k) = exp (—bk"), (12)
where b is a positive constant and k& = |k|. The Lévy
exponent - satisfies 0 < vy < 2; in the limit v = 2 a Gaus-
sian distribution is recovered. The anomalous properties
of the Lévy distribution are due to its singular behavior
near k = 0, w(k) = 1 — bk". Although Eq. (12) cannot
be Fourier antitransformed to obtain an explicit expres-
sion for p(r), it is possible to find simpler forms of the
jump probability whose structure function has the same
properties as Lévy’s. In one dimension, it is sufficient to
take p(r) ~ r~ 177 for r — oo.

Note that p(r) ~ r7'~7 with 0 < ¥ < 2 implies a
divergent mean square displacement, {r2) — oo, which
characterizes one type of anomalous diffusion. In the
frame of generalized statistics [19,14], this divergence can
be “renormalized” to produce other forms of anomalous
diffusion, as described in the Introduction.

eCo [ul/™ u
B Ai B

with 4; = v(2b))/7sin(r/v) and B; = 2bAn(1 — 7).
This expression is valid except in the marginal cases when
1/~ is an integer number.

Equation (14) cannot be explicitly antitransformed
and, therefore, we are restricted to an approximated anal-
ysis of that result. We focus our attention on the long-
time limit of our problem, which corresponds to u — 0
in the Laplace representation. In this limit, the hyperge-
ometric function can be approximated by the first terms
of its ordinary power series expansion. In order to an-
alyze the resulting asymptotic form of the reaction rate
we must consider two cases separately.

A. The case v > 1

For 1 < v < 2, the first terms of the expansion in
powers of u of the Laplace-transformed reaction rate are

2:((;:) = A7 — g_?ul—'l/'r + g_%u2—3/7 + O[u2_2/7],
(15)
which in the temporal variable correspond to
2k(t) tt/r=1 A2 g2/v2
«Co ~ 'T(/7)  BiT(2/y-1)
A3 g8/r-3 + o, 16)

TBITE/ - 2)

Within this approximation, the reduced concentration
n(t) results, according to Eq.(10),

—— + 5 2Fi(L,1-1/7,1;2 -1/ —U/Zbkﬂ’)] )

In order to explicitly calculate the one-dimensional
form of R(0,u) we replace the structure function in the
one-dimensional version of Eq. (11) by w(k) = 1 — bk".
This corresponds to neglecting higher-order terms in &
and is therefore implying a condition on the constant b.
In fact, the inequality bn” <« 1 should be fulfilled. We re-
mark that, as it results from Eq. (12), the quantity b1/7 is
a length scale characteristic of the jump probability p(r).
Within this approximation, R(0, ) has a relatively sim-
ple expression, which can be exactly evaluated in terms
of a hypergeometric function [20]:

At+u [T dk
u  Jo AbKY 4+ u

AT (19151 + 17 A ),

R(0,u)

(13)

According to Eq. (9) and using linear transformations
of the hypergeometric function, the Laplace-transformed
reaction rate can be written as

-1

(14)
[
eCy ti/y A, t2/7-1
)= |1+ 24 -2
n) =11+ l(r(l/wl) B, T(2/)
—1
A} 32
L 4 O3/ 2 .
tETEn - T ()

The leading term in the asymptotic decay of the re-
duced density can be written as

2 T(1+1/y)

N —— t=/7,
n(t) €Co v(2bA)1/7 sin(m /)

(18)

This anomalous power-law behavior, n(t) ~ t~1/7, coin-
cides with the result suggested by numerical simulations
and semiquantitative analyses [8,9]. Our approach pro-
vides also the analytical form of the prefactor multiplying
the time power, which depends rather strongly on the
Lévy exponent . A detailed comparison of this result
with numerical simulations is presented in Sec. IV.
Note that in the limit v = 2, when the Lévy distribu-
tion reduces to a regular Gaussian, the ordinary-diffusion
result, n(t) ~ t~1/2 [cf. Eq. (1)], is recovered. In the op-
posite limit, v — 1, the density decays as n(t) ~ t71,
coinciding with the prediction of the chemical-kinetics
rate equation (with constant reaction rate). As we show
in the following, this result matches with the case v < 1.

B. The case v < 1

Formally, the treatment of this case is identical to that
of the previous one. However, the leading terms in the
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expansion of x(u) in powers of u in the two cases are dif-
ferent. For 0 < y < 1, the Laplace-transformed reaction
rate is, to the first orders in u,

2k(u) 1 B} 1/vy—2 Bf 2/y—3 -
=B I WS Vo 21,2/ 3/v—47,
GCO 14 Al v + A% v + O[U ]
(19)
Antitransforming this expression, we obtain
2k(t) B? -1/~ B} 272
= D1 — + =5 =
eCo A T(2-1/y) A2T(B-2/v)
+O[t3=3/7]. (20)
The approximated reduced concentration is then
GC() Bl t2~1/7
)= |1+ -2By(t—="Lt—
n() = [14+ 5528 ( A TG -1/
B} 37 4-3 -t
e T4 /7” . 21
ATy T 21

Now, the asymptotic evolution of n(t) is dominated by
the term

1 1 .

) ~ e =) ¢

(22)

The power of time in the decay of the density results in
being independent of vy and, as said before, coincides with
the power predicted by the ordinary chemical-kinetics
rate equation corresponding to our bimolecular reactions,
7. o« —n2. This equation is derived from the assumption
that any pair of particles in the system is able to react
at any time, which is equivalent to supposing that the
particles are subject to a very efficient transport mech-
anism. In other words, ordinary rate equations describe
well stirred systems. Equation (22) indicates then that
this limit is in fact attained by Lévy random walks for
v < 1. In these conditions, anomalous diffusion is, as a
transport process, strong enough to cease being a limit-
ing factor to the kinetics of the reaction. Note, however,
that a dependence on the Lévy exponent remains in the
prefactor of t—1.

IV. COMPARISON WITH SIMULATIONS AND
SHORT-TIME EVOLUTION

In this section we first compare the long-time asymp-
totic analytical results obtained above with numerical
simulation of the binary annihilation reaction A+ A4 — 0.
Then, we study the behavior of the particle number in the
numerical system for short times. With these two limits,
we propose an interpolation for describing the evolution
of n(t) in the whole temporal range.

Our numerical simulations of the reaction A + A — 0
are carried out along the lines already described in Ref.
[9]. The particles perform a Lévy-type random walk on
a one-dimensional lattice with periodic boundary condi-
tions. At each time step At, whose duration depends on

the particle number At = 1/N(¢), one particle is chosen
at random. It jumps to the right or to the left with equal
probability, and if the arrival site was occupied, both par-
ticles are removed. The jump-length probability p(r) is
given by

p(r) = No(ro +7)" 177, (23)

where Ny is a normalization constant. This form of p(r)
satisfies the required asymptotic behavior for large r.
The constant rg is a typical length related to the co-
efficient b in Eq. (12) [18]. In order to compare our
analytical and numerical results, ro has to be chosen in
such a way that, as stated before, bnY < 1.

Figures 1 to 3 show the results of simulations for three
values of v, over a 1.896 x 10%-site lattice, with initial
concentration Cy = 1, i.e., with one particle per site. In
order to make the plotted curves visible, we only display
some logarithmically spaced points representing the re-
duced particle number n(t), obtained from simulations as
a function of time. Full lines in each plot stand for the
long-time approximation derived in the preceding sec-
tion. They represent the contribution of the two lead-
ing terms in Eqgs. (16) and (20). We can see that these
approximations are acceptably good for times t > 10%.
Furthermore, they seem to improve for decreasing -.

A comparison of numerical and analytical results for
short times is more difficult. Indeed, our numerical
scheme, defined through the jump probability given in
Eq. (23), does not correspond neither to the Lévy struc-
ture function (12) nor to its approximated form w(k) =
1 — bk”. Although they coincide in the limit of large
r, severe differences are found for short jumps. In the
temporal evolution, these differences imply that the nu-
merical and the analytical descriptions can be compared
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FIG. 1. Evolution of the reduced number of particles
undergoing the annihilation reaction A + A — 0 over a
1.896 x 10°-site lattice, with one particle per site at ¢t = 0.
The Lévy exponent is v = 1.60. Dots indicate the result of
numerical simulations. The full line corresponds to the ana-
lytical result for long times, calculated from the two leading
terms. The dotted line stands for the short-time approxi-
mation, and the dashed line is an interpolation of the two
approximations, defined in the text.
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FIG. 2. Same as Fig. 1, for v = 1.25.

only when each particle has performed a substantial num-
ber of long jumps, so that the length of its trajectory is
essentially dominated by them.

On the other hand, the short-time evolution of numer-
ical simulations can be analytically explained from an
exact probabilistic description of the very initial stage,
achieving acceptable agreement, even for unexpectedly
large times. This approach is based on the computa-
tion of the mean particle number that is expected after
the first temporal step, i.e., for t = 1/N(0) = Ate. In
fact, N(Atg) can equal either N(0), if the chosen particle
hops to an empty site, or N(0) — ¢, in the opposite case.
The probability of occurrence of each case can be easily
computed by combining the jump probabilities with the
occupancy probability. For a homogeneous particle dis-
tribution, this latter probability is simply given by the
particle concentration. In the discrete lattice, the proba-
bility that the particle number equals N(0) — € after the
first jump is

PR = Co ZP(T) = CO[]- -—p(O)],
r#0

(24)

where p(0) is the probability that the chosen particle re-
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FIG. 3. Same as Fig. 1, for v = 0.75.

mains in its site, Cp is the initial concentration measured
in particles per node, and the sum runs over all the lattice
sites, with the exception of the initial site of the jump-
ing particle. Clearly, Pr depends on the Lévy exponent.
The mean particle number after the first jump is then

(N(Atg)) = (1 — Pr)N(0) + Pr[N(0) — €]

= N(O) -—GPR. (25)

Now, according to Eq. (10) a heuristic short-time de-
pendence for the reduced particle number of the form

n(t) ~ (1 + kot) ™! (26)

can be reasonably proposed. The constant kg is chosen
in order that this approximated expression of n(t) satisfy
n(Atg) = (N(Atp))/N(0) =1 — ePr/N(0). We obtain

1 1
Ko = Aty [I—GPR/N(O) 1] . (27)

In view of the arguments used to propose this short-
time approximated density, Egs. (26) and (27), it could
be expected that such an expression be valid only at the
very initial stages of the evolution, for times of the order
of Aty = 1/N(0). It is therefore rather astonishing to
verify that, according to our simulations, the approxima-
tion is acceptable for times as long as ¢ = 100, which is
several orders of magnitude larger than Aty ~ 5 x 1077,
In the plots inserted in Figs. 1 to 3 we show the results of
numerical simulations for times ¢t < 50. The dotted lines,
which have also been plotted in the main plots, stand
for the short-time approximation. In the graphics with
linear scales this approximation cannot be distinguished
from the numerical results. This remarkable agreement
seems to indicate that the density fluctuations, which are
known to dominate the evolution for long times, begin to
act only after a relatively long time interval. During such
a period, the evolution would be essentially driven by the
uncorrelated events considered to exactly calculate the
mean particle number after the first step, Eq. (25).

The good agreement of our analytical approximations
with the numerical results for both long and short times,
naturally leads us to propose an interpolation to be used
as a heuristic description of the evolution in the whole
temporal domain. After some trials, we have found that
a square average of those approximations reasonably fits
with the simulations for all times. Calling ng(t) and
nr(t) the short- and long-time approximations, respec-
tively, the quantity

na(t) = /n3(t) + n3.0 (28)
defines such an average. It has been plotted in Figs. 1 to
3 as a dotted line. Its usefulness in describing the whole
evolution is apparent.

V. MANY-DIMENSIONAL SYSTEMS

Although the analytical calculation of the evolution of
the particle number for a system in a many-dimensional
domain requires some further assumptions and approx-



53 ANALYTICAL APPROACH TO COAGULATION AND... 233

imations, it is a rather straightforward extension of
the calculation in the one-dimensional case. There-
fore, we here restrict ourselves to outline the calculation
of the leading term in the long-time asymptotic evolu-
tion, which results in a simple generalization of the one-
dimensional situation.

According to Egs. (8) and (12), R(0,u) can be calcu-
lated as an integral on a d-dimensional hypercube cen-
tered at the origin,

Ad+u [T 4 1
R(O,u) = —— dky--- dkg ———
©w="Tors [ b [ ke g, ()
with k* = k? + ... + k2, and where we have used

the same approximation as in the one-dimensional case,
w(k) = 1 — bk”. This many-dimensional integral cannot
be explicitly calculated, but can be evaluated in an ap-
proximated way at an appropriate limit. In fact, if the
integrand is much smaller in the boundaries of the hyper-
cube than in the origin, i.e., if bA7Y > u, it is possible
to replace the integration domain by a hypersphere of
radius am, with « of the order of unity. Note that this
small-u approximation stands for the long-time limit. We
can roughly say that it is valid for ¢ > 1/bAwx"Y. Within
this approximation, we have

A+u o pd-14dk
R(0,u) = G5yt / Ve
)\+uadﬂd

T T iy 2F1(d/7, 11+ d/v; —bA(an)/u),
(30)

where Qg4 is the total solid angle in d dimensions.

The Laplace-transformed reaction rate x(u) can now
be calculated from Eq. (9). In order to analyze the long-
time (v — 0) limit, as in the one-dimensional situation,
two cases have to be considered separately. If d < «, the
antitransformed asymptotic reaction rate results,

K(t) ~ €Co (27)4y sin(nd/7)
T2 w1y T(d/v)

and the corresponding leading term in the reduced par-
ticle number is

2 17 F(1+d/7) —a/y
€Cop (2m)2y(2bA)4/7 sin(wd/v) ’

(2bM) Y7/ -1 (31)

n(t) =~ (32)

Note that this expression reduces to Eq. (18) as d —
1. Moreover, it does not depend on the parameter «
of Eq. (30) and, therefore, the change of the integration
domain in (29) has been irrelevant.

As for one-dimensional systems, the decay of the par-
ticle number in the case d < < is anomalous, with a
power depending on both the dimension and the Lévy
exponent. We stress, however, that this situation is rel-
atively marginal. In fact, the structure function given
in Eq. (12) does represent anomalous diffusion only for
v < 2. Therefore, our result (32) applies for d < 2 and,
having been obtained from an analytical treatment on
the lattice, it should hold for d = 1 only. In spite of
this constraint, we are tempted to conjecture that the

decay of the particle number in a system evolving on a
fractal substrate of dimension 0 < d < 2 will follow the
anomalous law n(t) ~ t=%/7.

In the more relevant case when d > < the long-time
asymptotic reaction rate is constant,

2977 d — 5
li(t) ~ EC() Q 'aT_‘; bA, (33)
and the reduced particle number behaves as
1 Qd ad_'y 1
"M~ o @amrd—n (34)

cf. Eq. (22). Unfortunately, these results now depend
on the undetermined parameter . But, since we ex-
pect that a ~ 1, its effect should not be very important.
A determination of a could, however, become necessary
in a detailed comparison with numerical simulations. In
any case, here we are mainly interesed in pointing out
the asymptotic temporal dependence of n(t), which indi-
cates that, in this situation, anomalous diffusion acts as
a strong transport process and the system is well stirred.
This transport mechanism is again unable to control re-
actions and the particle number decays, as predicted by
ordinary chemical-kinetics rate equations. Some prelim-
inary numerical simulations on two-dimensional square
lattices, to be presented in a more detailed analysis of
many-dimensional systems, have shown that this is in-
deed the case.

VI. DISCUSSION AND CONCLUSION

We have studied the effect of anomalous diffusion as a
transport process on the chemical kinetics of a system of
reacting particles, undergoing the reactions A+ A4 — 0 or
A+ A — A. Our analysis has been carried out following
the lines of a continuous-time random-walk theoretical
approach on the lattice [16], able to be compared with
numerical simulations. The main goal of this approach is
to provide an explicit form for a time-dependent reaction
rate, to then be used in the chemical-kinetics equation
that governs the evolution of the particle number.

Anomalous diffusion has been represented by means
of Lévy flights, a class of random walks characterized
by a structure function w(k), which, for small |k|, be-
haves as w =~ 1 — blk|” (0 < v < 2). This corresponds
to a jump probability with an asymptotic power-law be-
havior, p(r) ~ 77177, whose second moment therefore
diverges. Lévy flights have been already extensively used
as a model for anomalous diffusion in a variety of re-
lated problems, such as porous media, turbulent flows,
and chaotic dynamics [10-13].

Our main results on d-dimensional systems can be
summarized as follows. For d < +, the particle number
decays as N(t) ~ t~%/7 for long times. This asymptotic
result, which had been advanced in Refs. [8] and [9], is rel-
evant for d < 2, as the Lévy exponent is restricted to the
interval 0 < v < 2. Hence, according to our formulation,
which is valid for integer dimension, it only applies in
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the one-dimensional case. One can, however, conjecture
that it is also valid on fractal domains with d < 2. Be-
sides the asymptotic power-law behavior of the particle
number, our results provide also other lower-order terms
and the corresponding constant factors, making possible
a detailed comparison with numerical simulations.

For d > ~, the leading order in the asymptotic decay
of the particle number behaves as in ordinary chemical
kinetics, N(t) ~ t~1, which corresponds to a constant
reaction rate. In this situation, anomalous diffusion is a
sufficiently strong transport mechanism, and as a result
is unable to control the kinetics of the reactions. How-
ever, it has to be stressed that a dependence on the Lévy
exponent -y remains in the coefficient of the leading time
power, as well as in lower-order terms.

Comparison with numerical simulations has been re-
stricted to one-dimensional systems. We have found an
excellent agreement between numerical results and the
long-time asymptotic decay of the particle number pre-
dicted by the analytical approach. To describe simula-
tions at short times, we introduced a simple probabilistic
argument, based on the change of the particle number at
the very first stage of the evolution. This result, com-
bined with an ad hoc formula suggested by the analyti-
cal formulation, has provided a short-time approximation
whose validity extends through an unexpectedly long pe-
riod. Finally, an interpolation of the long- and short-time
approximations has provided a heuristic expression to ac-
curately describe the evolution along the whole temporal
domain.

We have to point out that, probably, the Lévy flights

considered in our formulation are not the most proper
model for anomalous diffusion. In fact, in a Lévy flight,
a particle jumps from its site, “flies” over the lattice,
and “lands” on the arrival point. In a more realis-
tic representation, which cannot be treated within the
usual random-walk theory, the particles should perform
a “Lévy walk,” running over all the intermediate points of
their trajectories. We have carried out some simulations
in which particles perform these “Lévy walks” on a one-
dimensional lattice. The results show that, for v > 1,
the particle number decays as N(t) ~ t~1/7, coincid-
ing with our previous results. But we observed that the
same decay occurs also for v < 1. In this situation, the
particle number decreases faster than t~!, the ordinary
chemical-kinetics decay. Notably enough, this result can
be understood as follows, in terms of very simple argu-
ments. The probability that a particle finds a reaction
partner in its “Lévy walk” is roughly proportional to the
probability of a jump longer than the mean distance be-
tween particles, z(t) ~ 1/N(t). This can be calculated
as [ r~1=Ydr ~ z~7. Then, N/N ~ z~7 ~ N7, which
immediately produces N(t) ~ t~'/7. Indeed, this very
unusual result, which can be readily confirmed by simu-
lations, deserves further consideration.
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